GF-1 leaf area index product across China based on three-dimensional stochastic radiation transfer model

نویسندگان

چکیده

叶面积指数LAI(Leaf Area Indexï¼‰æ˜¯ç ”ç©¶æ¤è¢«ç”Ÿæ€ç³»ç»Ÿç»“æž„å’ŒåŠŸèƒ½çš„æ ¸å¿ƒå‚æ•°ä¹‹ä¸€ï¼Œé¥æ„Ÿæ˜¯èŽ·å–å¤§èŒƒå›´åŠ¨æ€LAIçš„ä¸€ä¸ªä¸»è¦æŠ€æœ¯æ‰‹æ®µã€‚ç›®å‰å›½é™ ä¸Šæ²¡æœ‰é«˜åˆ†è¾¨çŽ‡çš„LAIæ ‡å‡†åŒ–äº§å“ã€‚æœ¬æ–‡åŸºäºŽä¸‰ç»´éšæœºè¾å°„ä¼ è¾“ï¼ˆ3D-SRTï¼‰æ¨¡åž‹æŸ¥æ‰¾è¡¨ç®—æ³•ç ”ç©¶äº†é€‚ç”¨äºŽå›½äº§é«˜åˆ†è¾¨çŽ‡å«æ˜Ÿé«˜åˆ†ä¸€å·å®½å¹ ç›¸æœºï¼ˆGF-1 WFVï¼‰çš„å¶é¢ç§¯æŒ‡æ•°åæ¼”ç®—æ³•ã€‚æ¨¡åž‹ä¸­å•æ¬¡æ•£å°„åç §çŽ‡å’Œä¸ç¡®å®šæ€§ç­‰å‚æ•°ä¸Žæ³¢æ®µè®¾ç½®å’Œæ³¢æ®µç¨³å®šæ€§ç›¸å ³ã€‚ç®—æ³•åœ¨å ¨å›½èŒƒå›´å† é€‰å–ä¸åŒæ¤è¢«ç±»åž‹çš„å‡è´¨æ ·ç‚¹ï¼Œç»Ÿè®¡åœ°è¡¨åå°„çŽ‡çš„å·®å¼‚ç‰¹å¾ï¼Œè°ƒæ•´å ¨å›½6ç§æ¤è¢«ç±»åž‹å„æ³¢æ®µçš„å•æ¬¡æ•£å°„åç §çŽ‡ã€ä¸ç¡®å®šæ€§ç­‰ç®—æ³•å‚æ•°ï¼Œè¿›è€Œæž„é€ é€‚ç”¨äºŽGF-1 WFVä¼ æ„Ÿå™¨çš„æŸ¥æ‰¾è¡¨ä»¥è¿›è¡ŒLAIçš„åæ¼”ã€‚ç ”ç©¶ä¸­ä½¿ç”¨æ–°ç–†ç»´å¾å°”è‡ªæ²»åŒºçŸ³æ²³å­åœ°åŒºã€å† è’™å¤è‡ªæ²»åŒºå››é“æ¡¥åŒ å«å†œä½œç‰©ã€æ£®æž—ç­‰å ±359组实测地面数据开展LAIéªŒè¯ã€‚éªŒè¯ç»“æžœè¡¨æ˜Žï¼Œå’Œè°ƒæ•´å‚æ•°å‰çš„åæ¼”ç»“æžœç›¸æ¯”ï¼Œä¼˜åŒ–åŽçš„ç®—æ³•å‡æ–¹æ ¹è¯¯å·®RMSE可由算法优化前的1.209下降至0.804,决定系数R2由0.659提高至0.883,反演成功率RI可由25.3%提高至73.8%,算法精度和稳定性较高,更适用于GF-1å¶é¢ç§¯æŒ‡æ•°çš„åæ¼”ã€‚å°†å ¶åº”ç”¨äºŽGF-1卫星影像上,生产了2018年—2020å¹´å ¨å›½16 m空间分辨率10å¤©åˆæˆçš„å¶é¢ç§¯æŒ‡æ•°äº§å“ï¼Œäº§å“èƒ½å¤Ÿåæ˜ å‡ºä¸åŒæ¤è¢«ç±»åž‹çš„ç‰©å€™ç‰¹å¾ï¼Œæœ‰åˆ©äºŽå¤§é¢ç§¯å†œä¸šæž—ä¸šç­‰é¥æ„Ÿç›‘æµ‹åº”ç”¨ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional radiation transfer modeling in a dicotyledon leaf.

The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water ...

متن کامل

Regional Leaf Area Index Retrieval Based on Remote Sensing: The Role of Radiative Transfer Model Selection

Physically-based approaches for estimating Leaf Area Index (LAI) using remote sensing data rely on radiative transfer (RT) models. Currently, many RT models are freely available, but determining the appropriate RT model for LAI retrieval is still problematic. This study aims to evaluate the necessity of RT model selection for LAI retrieval and to propose a retrieval methodology using different ...

متن کامل

Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region

Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide c...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Leaf area index measurements

Leaf area index (LAI) is a key structural characteristic of forest ecosystems because of the role of green leaves in controlling many biological and physical processes in plant canopies. Accurate LA1 estimates are required in studies of ecophysiology, atmosphere-ecosystem interactions, and global change. The objective of this paper is to evaluate LA1 values obtained by several research teams us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2023

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20231708